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FLOW OF VISCOUS FLUID IN SPHERICAL LAYERS

(Review)

I. M. Yavorskaya and N. M. Astaf'yeva

ABSTRACT. A review is given of works /2*
devoted to the study of hydrodynamic motions
of a fluid in spherical layers and their
stability. The investigation of such flow
with various values of physical parameters
and various boundary conditions is of signi-
ficant interest for problems of astro- and,
geophysics with respect to problems of global
circulation in stellar envelopes and large
scale flow in planetary atmospheres.

Introduction

Investigation of hydrodynamic motions of fluid in spherical /3

layers with various values of the physical parameters and

various boundary conditions is of obvious interest for problems

of astro- and geophysics. Actually, meridonjal circulations in

stellar envelopes and large scale flow in planetary atmospheres

are described by hydrodynamic equations,t;taking into account

various physical processes occurring in these regions (sources

and transfer of energy, ionization, etc.), and certainly taking

into account rotation. Along with the calculation of complex

specific models, taking into account various physical factors,
it is necessary to study simplified models permitting, however,
one to obtain very general regularities. There is great interest

in this plan in studying the motions of a viscous fluid in

spherical layers, which arise as a result of shear, internal, or

*Numbers in the margin indicate pagination of original
foreign text.
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external supply of heat, rotation, etc. Replacement of the

spherical layers by plane layers, usually applied for simpli-

fication in many problems of geophysics, is far from always being

correct and can lead to incorrect qualitative conclusions, to

say nothing of the inaccuracy of quantitative evaluations. It

is known, for example [11], that instability phenomena in closed

and unclosed regions differ significantly and the solutions

obtained in the plane layer approximation for supercritical

values of the parameters cannot reflect the actual flow pattern.

The spherical geometry leads to significant complications, and /

even in the simplest version of the problem on the axially

symmetric motion of an incompressible viscous fluid between two

concentric spheres (Figure 1) rotating about a common axis with

different speeds, reduces to a complex boundary value problem

for the system of nonlinear partial differential equations:

2r ,:t ir -21, , e

,, 4 / /"- "p'!I , . ... .

*; ,: -Lo --
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,, with the corresponding conditions of symmetry for ' v::"j

or ', and three defining dimensionless parameters:

Here are the projections of the velocity on the coor-

dinate axes Y ; is the pressure; v is the kinematic

viscosity coefficient; and P are the radii and angular

velocities of the inner and outer spheres.

The solution of the boundary value problem in the whole

range of the defining parameters can be obtained only with

numerical methods. Although the general circulation of planetary /5

atmospheres is basically three-dimensional, the two-dimensional

axially symmetric flow can be considered as some approximation

for the circulation in the equatorial regions. Moreover, devi-

ations from axial symmetry are often small in comparison with

the basic flow and the axially symmetric flow can simulate the

averaged meridianal circulation.

The problem of stability of flow arising in a spherical

layer, besides being of applied interest, is also of purely hydro-

dynamic interest. As is well known, a tremendous number of

works has been devoted to the study of the stability of plane

Poiseuille and Couette flow and analogous flow in tubes and

cylindrical layers, and only a few works on the stability of

flow in a spherical layer. This is evidently the result of

the absence of an analytic solution of the equations for the

basic steady-state motion and the significant dependence of this

solution on the Reynolds number Re. Both these facts signifi-

cantly complicate the theoretical investigation of stability.

The complexity of fulfilling an experimetal assembly and the

rigid limitations on the tolerances have evidently delayed

3



experimental investigations in

, this direction. However, in spite

of all these difficulties, interest

in the study of fluid motion in

-. spherical layers has noticeably

increased in the last 5 - 6

years and Part 1 of the review

presented below reflects the

-7 results of the works of the recent

years.

Figure 1. Schematic form of
the -floworegion. Taking into account the

effect of thermal effects in stably

Sstratified spherical layers in the Boussinesq approximation and

convective flow of fluid under conditions of rotation, shear,

etc., are of no less interest for astro- and geophysics. The

basic results obtained in this direction over the last decade

will be discussed in Part 2 of the review.



SPHERICAL COUETTE FLOW AND ITS STABILITY

§ 1. Basic Steady-State Flow

In a spherical layer with rotation of one or both of its /6

boundaries, there arises fluid flow, which we will call spheri-

cal Couette flow by analogy with the plane and cylindrical

cases. This flow is mathematically described by the boundary

value problem formulated above (D0.1) and (0.2), and the nature

of this flow is defined by the value of the dimensionless

parameters Re, w, and 6.

a) Sufficiently small Reynolds numbers.

For small Re, the solution of the boundary value problem

can be obtained analytically by representing the solution in

the form of a series in positive integer powers of Re:

U: 1l.l)U. = A

The convergence of this series for sufficiently small Re was

proven in [2]; however, the problem of the radius of convergence

remains open. It is clear only that the Reynolds number Re,,

being the radius of convergence of (1.1), depends significantly

on the other defining parameters of the problem A and 6. The
th

zero-- term of the expansion in (1.1) describes the flow when

the inertial forces are small, compared to the viscous force.

In this classical case, the flow is motion along a circle with

a velocity:

5



Axially symmetric meridianal flow arises for large Re,

which is described by the first term in (1.1) [3,. 4, 5]:

where

The constants A, B, 'C'and Ddepend only on a = 1 + 6 and w. /7

Higher terms of the series (1.1.) were determined in [6].

However, for solving practical problems, we.are mainly interested

in the problem of the rate of convergence of the series (1.1),

i.e., the accuracy with which n terms of the series approximate

the exact solution. Until now, assertions have been encountered

in the literature that the expansion (-1.1))or the approximate

solution (.1.2) are valid only for Re <<1 13]. That this is not

true can be seen from theresultsl of [4 and 6]. Thus, for thick

layers with 6 ~ 1 and w = w (rotation of the outer sphere only),

the approximate solution Uo + Re Ui with Re < 10 is practically

undistinguishable from the exact [6]. For thin layers 6 < 0.1

and w - 1, the situation is even better and the ratio I'UI/IUoI

is sufficiently small4 [];( thus, for 6 - 0.1,

Thus, in thin layers (6 <<1) (and it is these cases which are

of greatest interest in astro- and geophysical applications),

one can make use of the approximate analytic solution (1.1),

taking into account only the first few terms, for sufficiently

large Reynolds numbers (-1000 and greater), depending on the

specific value of 6.
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The motion described by (1.1) can be represented as a

differential rotation about the axis with the velocity;

U Uz f

and meridianal flow with velocity

The general form of the flow in the meridianal plane for suffi-

ciently small Re is determined by the function f('1), whose

nature depends to a significant degree on the parameters a and

W. The possible types of meridianal flow depending on the

values of the parameters a and w are presented in Figure 2;

I is single-vortex circulation with counterclockwise rotation;

III is single vortex circulation with clockwise rotation, and

II is double vortex circulation with opposite rotations of. the /8

vortices. The regions in the a,w plane, in which one or the

other type of circulation occurs, are shown in the same figure.

The boundary curves of wa(a)-and'w2(a),are found from the

conditions T"(a) = 0 and T"(i1) = 0, respectively:

. ...,-.5ia 3 +?c 77o'- ,53 4  .t t

S6a + 41a + 93a + IO a.,56 +1t2

2 a,'3- +a +056 a +Sea^14a
,a-'+ 66a +.1£a 93at +4£a+6

('0 2 ' + 53 a-'+ 77 at + 5 fa + 1 ) a'

The surfaces of equal angular velocities for small Re are

close to the concentric spheres.

b) Reynolds numbers Re >>1 and Almost Rigid Body

Rotation I-f i7

In the other limiting case of very large Re and small jI-1 /
(the rotational velocities of the spheres are almost the same),

an analytic solution is found by the method of inner and outer

7



experimental investigations in

22 this direction. However, in spite

of all these difficulties, interest

S- win the study of fluid motion in

U4, spherical layers has noticeably

increased in the last 5 - 6

- -- years and Part 1 of the review

presented below reflects the

Z, results of the works of the recent

years.

Figure 1. Schematic form of
the flow region. Taking into account the

effect of thermal effects in stably

stratified spherical layers in the Boussinesq approximation and

convective flow of fluid under conditions of rotation, shear,

etc., are of no less interest for astro- and geophysics. The

basic results obtained in this direction over the last decade

will be discussed in Part 2 of the review.
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SPHERICAL COUETTE FLOW AND ITS STABILITY

§ 1. Basic Steady-State Flow

In a spherical layer with rotation of one or both of its /6

boundaries, there arises fluid flow, which we will call spheri-

cal Couette flow by analogy with the plane and cylindrical

cases. This flow is mathematically described by the boundary

value problem formulated above (0.1) and (0.2), and the nature

of this flow is defined by the value of the dimensionless

parameters Re, w, and 6.

a) Sufficiently small Reynolds numbers.

For small Re, the solution of the boundary value problem

can be obtained analytically by representing the solution in

the form of a series in positive integer powers of Re:

The convergence of this series for sufficiently small Re was

proven in [2]; however, the problem of the radius of convergence

remains open. It is clear only that the Reynolds number Re*,

being the radius of convergence of (1.1), depends significantly

on the other defining parameters of the problem w and 6. The
th

zero-th term of the expansion in (1.1) describes the flow when

the inertial forces are small, compared to the viscous force.

In this classical case, the flow is motion along a circle with

a velocity:

5(1.2)
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w for small Re.

the inner sphere with an axis coinciding with the axis of
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rotation of the spheres separates

regions with different flow

characteristics:

R iiA R4

Here R is the dimensionless dis-

tance from the axis of rotation.

Outside the cylinder, the fluid

rotates like a rigid body with

the angular velocity of rotation

of the outer sphere Q2. Inside

Figure 3. Structure of the the cylinder in a nonviscous
Ekman and shear layers for flow core, the angular velocity

I I of rotation and the current

function of the meridianal flow depend only on the distance /9

from the axis of rotation. The fluid rotates with an angular

velocity intermediate between Q, and 22; the meridianal flow is

motion from the slowly rotating sphere to more rapidly rotating

cylindrical surfaces with generating lines parallel to the axis

of rotation of the spheres. Ekman boundary layers of thickness

Re- /2 are formed at the inner and part of the outer spheres, all of

the return flow occurs in a thin cylindrical shear layer close

to the cylinder of radius R = 1. This shear layer has a very

complex structure and actually consists of three separate layers

of differing thicknesses, which perform different physical

functions (Figure 3). There are two outer layers: one outside

the cylinder R = 1 of thickness Re -  , in which the main return

flow of fluid from one Ekman layer to another takes place, and



the second inside the cylinder R = 1 of thickness Re , in which

the process of smoothing the discontinuity in the azimuthal

velocity occurs. These layers are separated by an inner shear

layer of thickness Re -
' , in which the discontinuities in the

second derivative of the azimuthal velocity and in the component

of the meridianal velocity perpendicular to the axis of

rotation are smoothed.

c) Intermediate Reynolds Numbers

Solution of the problem in the case of intermediate Reynolds

numbers is the most complex. Obtaining solutions here is possible

only by numerical calculation by computer of the nonlinear

boundary value problem for the system of partial differential

equations (0.1) and (0.2). These solutions have been obtained

by difference 19, 10, and 11] and direct [6, 12 -- 14] methods.

Both types of methods are rather cumbersome, the application of

the difference schemes are related to a significant expenditure

of machine time; the application of direct methods requires the

use of a large number N of basis functions, which leads to

algebraic systems of very high orders. Comparison of the

results of [6, 9, 10, and 11] (Figures 4 and 5) with the

results of [12 -- 14] (Figure 6) indicates that, for an insuf-

ficient number of basis functions, solution by the Galerkin /10

method can evidently give not only quantitatively, but also

qualitatively incorrect results. We note that actual calcula-

tions were carried out in [10 and 111, not for an incompressible

liquid, but for a monatomic gas with

with a rotational Mach number

10



the inner sphere, a = 2, w = 0.

((Cp and C are the specific heats of the gas; c is the velocity

of sound). However, consideration of the compressibility of the

gas in the considered interval of the parameters

weakly affected the distribution of velocity, i.e., the Mach

number of the meridianal flow was two or three orders smaller

II

/e~5 ". 'f
n-'< Nrl

Nli CA

51 -k /v
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Figure 5. Streamlines and angular velocities for rotation of
the inner sphere, a = 2, w = 0.

than M . The results of [10 and 11] agree qualitatively and

quantitatively with the results of 16 and 9] obtained for the

incompressible liquid.

A certain method intermediate between the difference and

direct is proposed in a recently published work [3]. The

solutions are expanded in series in powers of the angle 0, the

12
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Figure 6. Streamlines for rotation of the inner sphere (top)
w = 0, Re = 59, 119, and 121 (left to right); of the outer
sphere (bottom) w = , a = 1.7, Re, = 21.7 (left to right);
Rel = 2R12/v.

coefficients in these series are functions of the distance from

the center z and an infinite number of coupled systems of

ordinary differential equations of fourth order with boundary

conditions specified at the two ends of the interval of vari-

ation of z is obtained for them. As is usual in the direct

methods, the system is cut off at some N and the obtained

boundary -value problem for N systems of fourth order is solved

by the adjustment method. Graphs of the solutions for a thin

layer 6 = 0.1 in the following intervals of values of Re and w:

13



Figure 7. Velocity components depending on Re for a = 0 (left)

10 e i O-)300 and

The results of the works in studying flow in spherical

14

Figure 7. Velocity components depending on Re for w = 0 (left)
and on w for Re = 2000 (right); 6 = 0.1, 0 = 45.

YO iKe ~,300 and 0 6 0)

are presented in Figure 7. It is confirmed that the convergence

of the method is fairly good in the considered interval of

variation of the parameters and N = 5 provides sufficient

accuracy of the solution anywhere except the equatorial region.

The results of the works in studying flow in spherical

layers, which arises due to rotation of the boundaries with

different angular velocities [3 - 14, permits understanding /11

the flow pattern in a wide interval of the defining parameters

Re, w, and 6. As has already been noted, for small Re and

arbitrary w and 6, the basic flow consists of rotation about

the axis with a velocity determined by (1.2), on which the

meridianal circulation (1.3) is superimposed (Figure 2), whose

intensity increases with increasing Re. The calculations indi-

cate that the further development of flow with increasing Re

depends significantly of the values of the other parameters:

w and 6.

14



For w = 0 (only the inner sphere rotates), the meridianal

circulation for Re consists of one vortex with counterclockwise

rotation. With increasing Re, the meridianal flow is concen-

trated in the equatorial region and stagnant zones are formed

near the poles (Figures 4 and 5). The surfaces of equal angular

velocities are strongly distorted, particularly at the center

of the meridianal vortex. The formation of boundary layers is

observed on the spheres. The described results are obtained by

the difference methods [9 - 111 and the Galerkin method [6]

for R=i ; fe2w~i .. > O,5 'eiOQ#SCO.

For w = m (only the outer sphere rotates), the meridianal

circulation for small Re consists of one vortex with clockwise

rotation. With increasing Re, the entire meridianal flow is

concentrated in the region inside the cylinder of radius R = 1,

equalling the radius of the inner sphere with generating lines

parallel to the axis of rotation; the region outside the cylinder

is almost rigid-body rotation. Regions of large angular and

meridianal velocity gradients are formed close to the cylinder

R = 1 (Figure 8). Boundary layers are formed on the spheres

inside the cylinder; in the region of the equator, a weak vortex

opposite in direction to the main circulation appears. With

increasing Re, a tendency toward the formation of a cylindrical /12

shear layer close to R = 1 is seen.

For w < 0, i.e., when the spheres are rotating in different

directions, and for small Re, the type of circulation depends

on the values of the parameters a and w (Figure 2). If, for

small Re, the circulation is double vortex (6 = 1, w = 0.5),

then the increase of Re leads to a predominant increase in

intensity of the vortex with negative circulation at the inner

sphere (Figure 9). If, for small Re, the circulation is single

vortex with positive rotation (w = -1, 6 = 1), then an increase

15



1000

Figure 8. Streamlines and angular velocities for rotation of
the outer sphere, w = 0, a = 2, Re = 10, 100, and 1000 (top to
bottom).

of Re leads to the formation of a vortex of opposite circulation

at the inner sphere (Figure 10). In both cases ( = -1; -0.5),

there is a tendency with increasing Re toward the formation of

a cylindrical shear layer close to the cylinder R = 1.

16
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Figure 9. Streamlines and angular velocities when the rotation
of the outer sphere is half that of the inner a = 2, w = -0.5,

Re, = 100, and 500 (top to bottom); Re I = 0IR2/v.

The effect of the layer thickness 6 on the development

of flow for the same values Re = 500, w = 0 is presented in

Figures 11 and 12 (6 = 0.5; 0.2; 0.1). The meridianal flow for

all Re consists of one vortex with counterclockwise circulation.

With decreasing 6 and constant Re, a decrease in intensity of

the circulation takes place, the center of the vortex rises and

the boundary layers disappear. The surfaces of equal angular

velocities inthe thin layers (6 = 0.2; 0.1) are almost concen-

tric spheres. The radial distribution of velocities at an

angle e = 45' for various w in the interval (0; -1) and

constant Re = 2000 and for fixed w = 0 and various Re from

500 to 2700 is presented in Figure 7. Comparison of the

results presented in Figures 4, 7, 11, and 12 indicates that

there is qualitative agreement of flow in thin layers for large

17
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and 1.1 (top to bottom).

§ 2. Stability of Spherical Couette Flow /_13

It is known that, for large Reynolds numbers, the established

laminar flow becomes unstable and, consequently, physically

unrealizable. This problem arises with the study of flow in

a spherical layer. Besides the natural necessity of identify-

ing the critical Reynolds numbers, the study of stability of the

flow under consideration also has purely hydrodynamic interest

for two reasons:

19
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Figure 12. Streamlines and angular velocities for rotation
of inner sphere, w = 0, a = 1.5, Re = 100, 200, and 500 (top
to bottom.

1. The investigated flow occurs in a closed region, in

contrast to the usually considered plane and cylindrical Couette

and Poiseuille flow;

20



2. The nature of the basic flow depends on Re, which is

also unusual for this type of problem.

Results of investigations of the stability of flow in

spherical layers is very sparse, in view of the great complexity

of the problem [15 - 19]. The stability of flow relative to

infinitesimal axially symmetric perturbations was investigated

in the works of V. I. Yakushin [15 -- 18] and the stability

relative to finite non-axially symmetric perturbations was

investigated by the energy method in the work of Munson and

Joseph [19]. A summary of the results of [15 - 19] is presented

in Table 1. However, as is seen in the table, the results of

these works do not permit obtaining a unified physical picture

of the occurrence of instability in spherical layers. Actually,

in [15 and 16], the stability was studied for flow in thin

layers relative to infinitesimal axially symmetric perturbations

for rotation of the inner sphere only (w = 0) or for rotation

of both spheres in the same direction (w > 0). The critical

Reynolds numbers were found and curves were obtained analogous

to the Taylor curves for the rotation of cylinders and repre-

senting the boundary of stability in the planes

Ize, Rej2:- Q2. /4

for Aw 0; 6 = 0.07 and 6 = 0.1 (Figure 13). The fluid motion /14

in thin layers 6 = 1 and 0.7 relative to the same perturbations

for the rotation of the inner sphere only (w = 0) is always

stable [17]. Flow with rotation of the outer sphere (w = CO)

and layer thicknesses of 6 = 0.07 and 6 = 0.7 is also stable

[18]. The results of [15 - 18] give the justification to

assume that the parameters w and 6 play the deciding role in

the stability of flow in a spherical layer relative to

infinitesimal axially symmetric perturbations. The conclusions

follow from [15 -- 18]:

21



1. Flow in layers of

arbitrary thickness for rotation

lA 4t i-z , of the outer sphere only (w = m)

is always stable;

S ; i for° 2. In thin layers (6 < 6*)

- - - for sufficiently large Re > Re (6)

and w - 0, flow becomes unstable.
Figure 13. Curves of

i However, the thinner the layer,stability of motion in a
thin spherical layer, a = the more stable it is, i.e., the
1.1 and 1.07 (left to right). larger Re (6). The value of

cr

S* is not established in the works; however, there is experimental

evidence that 6* = 0.19 for w = 0 (cf., below).

3. Flow in sufficiently thick layers 6 > 6"* is always

stable, independent of the values of Re and w.

4. Perturbations causing the onset of instability at the

stability limit are a system of annular vortices, whose inten-

sity decreases from the equator towards the pole; the circulation

in neighboring vortices is in the opposite direction.

In contrast to the works of the cycle [15 - 18], the

stability of flow for rotation of both spheres in different

directions (w < 0) was also investigated [19]. As is well known,

the energy method used in [19] makes it possible to obtain

only the lower limit of stability, i.e., the value of ReE,

below which the flow is always stable. The results of [19] per-

mit reaching the following conclusions about the stability

of flow in spherical layers relative to finite perturbations

(cf., Table 1).

22



TABLE 1

STABILITY OF FLOW IN SPHERICAL LAYERS

Critical values
of Reynolds Conclusions Article

w 6 number

0 0.07 Re* = 3260 Instability relative to Yakushin, V. I.

0 0.1 Re* = 1600 axially symmetric per- MZhG, 1969, _--,
turbations No. 1

~ 1 < w 0 0.07 Re* = f(l.07,w,)Form of the stability Yakushin, V. I.
rn OH curve relative to axially MZhG, 1970,
q-, 1 < 0 0.1 Re* = (1.1, w) symmetric perturbations No. 12

0, were obtained for 6 = 0.1
1 - 0.07.

S 0.07 Flow=is stable relative to 0 < Re . 300 Yakushin, V. I.

0.7 axially symmetric pertur- 0 Re 1 ch. Zap. Perm.
bations in the specified _ Univ., 1970, No.

S_: interval '216

0 0.71 0 Re < 190iYakushin, V. I.
Uch. Zap. Perm.

0_ i0 Re < 120 Univ., 1971, No.
248

1 Re'r= 110 Nonaxially symmetric Munson, B. R.,
E perturbations with an

-1 1 Re = 47.5 perturbations with an Joseph. D. D.
boo azimuthal wave number

-0.5 1 ReE 55 m = 1 are most disruptive J9 F. Mech.,
E 1971, Vol. 49,

We 0 1 Re 90 No. 2
E

.0.7333 Re 2 = 190

0 0.333 ReE = 172.5



1. Motions arising with the rotation of the outer sphere /15

only (-w = );

2. Motions in thinner layers are more stable;

3. The most disruptive perturbations for all the consid-

ered w and 8 are nonaxially symmetric perturbations with an

aximuthal wave number m = 1, which are characterized by a

vertical flow'tthrough the equatorial plane, horizontal flow 0

through the pole, and two vortices of complex structure and

opposite directions close to the equator, ReE is a function of

w and 6.

A direct comparison of the critical values Re* and ReE

obtained by these two methods is clearly pointless. Nonetheless,

the first and second conclusions reached from both methods agree

qualitatively, i.e., the flow is more stable in thinner layers

and with the rotation of the outer sphere only. However, such

a decisive role of the parameters w and 6 on the flow stability

does not follow from the energy method, as in the method of

small perturbations; that is, a change in the values of w and 6

in E[19] changes only the critical value of the'Reynolds number
E.

Re whereas the general conclusion about-.the stability remains

unchanged: for all considered values of w and 6 (-cf., Table 1)

the most disruptive are the same nonaxially symmetric perturba-

tions with m = 1 (we note for accuracy that the stability of

flow in thin layers with 6 < 6* was not investigated with the

energy method).

Thus, the results obtained in [15 --- 19] cannot always

agree between themselves, although at this stage of the investi-

gations, it is too early to indicate any contradictions.

Analogies with. Couette flow between cylinders [20 and 21] and
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convective instability in a spherical layer [22 -- 25] are of

little help for a qualitative understanding of the instability

phenomenon. In these problems, irelated to-some extent, the layer

thickness 6 'does not play such a decisive role in the problem /16

of flow stability, i.e., in these problems, there is no such

critical values of layer thickness 6*, above which ( > 6*) the

flow would remain stable relative to infinitesimal perturbations

for any values of the other parameters. The parameter w, as

was explained, was found to be a more significant parameter

in the cylindrical Couette flow. For sufficiently large

negative w (w < -0.76), i.e., for rotation of the cylinders in

the opposite directions, the loss of stability of the main

flow beings not relative to axially symmetric perturbations,

but relative to non-steady-state nonaxially symmetric perturba-

tions with an azimuthal wave number m, depending on o [21].

A spherical layer with slow rotation is also convectively
unstable relative to similar perturbations [22, 25], only

here the!azimuthal wave number m equals the poloidal wave number

Z; the value m = Z is determined by the thickness of the spheri-

cal layer 6. -It should be emphasized that, in these problems

[21, 22, and 25], the nonaxially symmetric perturbations causing

the instability, in contrast to the results of [15], are not

steady-state. Thus, if the Galerkin.method in [15 -- 18] gave

correct results on the instability of motions in a spherical

layer relative to infinitesimal perturbations and the energy

method [19] permitted finding the critical Reynolds numbers

close tb*othe critical Reynolds numbers Re of the linear problem,

then the picture of flow instability arising in a spherical

layer with shear is very unusual and dissimilar to all investi-

gated analogous problems. Further investigations in this

direction are necessary and, in particular, consideration of the

instability of flow relative to nonaxially symmetric perturbations

in the linear problem and obtaining solutions of the problem in
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a wider range of values of the parameters w and 6 to formulate

the complete picture of flow in spherical layers. Much confusion

of the theory could be clarified experimentally. However, we

know of only two works [26 and 271 in which flow in spherical /17

layers was studied. Both works were performed on similar

apparatus at the Perm State University.

The divided outer sphere was cut from plastic and made

transparent for visualization of the observations. Its radius

T= 5U4V0 remained fixed. The interchangeable inner spheres

were also cut from plastic. Distilled water and aqueous solu-

tions of glycerine were used as the working liquid. Aluminum

powder and various types of dyes were used for visualization of

the flow. Motions arising in the liquid with rotation of the

inner sphere only w = 0 and layer thicknesses 6 = 0.0371; 0.0745;

0.1225; 0.1901; 0.4443; and 1.5147 were studied. The torque M

acting on the outer sphere* was measured and visual observations

of the flow characteristics were carried out for various layer

thicknesses and angular velocities for Re. The results of the

experiment are presented in Figure 14 and Table 2. It is

obvious that, if the solution is represented in the form of a

sum of three terms of the series (1.1), then:

and the dimensionless torque is defined as:

_ ". "$(2.1)

where the constant c is defined by the form of the function A ()

Y a< t ,dO, where -,L .). are the stresses

acting per unit area perpendicular to the radius in the Y direc--
tion, n is the dynamic viscosity coefficient.
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Re

Figure 14a. Experimental Figure 14b. Experimental
dependence of p on Re for dependence of critical Re
various thicknesses of the ._ on thickness of the fluid
fluid layer, w = 0. layer, w = 0.

For slow rotation, when the solution is described with a

high degree of accuracy by the first two terms in the expansion

(1.1), the torque p is a linear function of the Reynolds number.

As is seen in Figure 14,:.in accordance with theory (2,1), the

experiment gives the linear dependence p = Re for all investi-

gated values of 6 for small Re. The experiment confirms, in

agreement with the theory, the significant dependence of the

motion on the layer thickness 6 with increasing Re.

a. For thick fluid layers 6 > 0.19 w = 0), no stability

loss is observed with increasing Re. The interval of Re, in

which the linear law occurs, is determined by the layer thick-

ness 6; thus, for 6 =-0.444, 0 < Re i 100, and for 6 = 1.515,

0 < Re " 20. Deviation from the linear law begins with further

increase of Re and, after some intermediate region, the

dependence i - Re 2 is established, which is characteristic of

the boundary layer. The visual observations indicate that the

fluid motion agrees well qualitatively with the motions found

theoretically in [4, 9, and 10] and differs from [12]. It

consists of rotation and a meridianal flow directed from the

poles toward the equator near the outer sphere and in the
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TABLE 2*

Cfrom [26])

Number ~" Re*
I 0,0371 6500 + 700 2,47 ± 0,06

2 0,0745 2300 ± 200 2,63 + 0,07

3 0,1225 1250 + 90 2,88 0,07

4 0,190I 540 ± 20

5 0,4443 - -

6 1,5147 -

*Commas in the numbers indicate decimal points.

opposite direction at the inner. This motion is symmetric with

respect to the plane of the equator. The meridianal flow

changes qualitatively with increasing Re: the flow lines are

deformed, being increasingly compressed toward the boundaries

of the region. A boundary layer is formed, adjacent to the

spheres and closed at the poles and along the plane of the

equator, which divides the liquid into two symmetric flows [16].

As is evident from-the description of the flow, separation of

the flow into two meridianal vortices, as obtained in [12], does

not occur.

b. In the case of thin fluid layers 6 ! 0.12, an increase

of Re leads to the loss of stability of the basic motion, which

causes the appearance of the discontinuity in the graph (.Figure

14a) for some Re, depending on the layer thickness. With a

further increase of Re, a new steady-state motion is established,

which is characterized by another linear dependence:

(= 2.2)
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As is seen in Table 1, the angular coefficient k tends almost /19

linearly on the layer thickness 6., It is observed visually

that the loss of stability of the basic flow is characterized

by the formation of "annular vortices in the equatorial belt,"

which remain stable and stationary in the entire region over

which Relation (12.2) is satisfied. They are qualitatively

similar to the Taylor vortices between rotating coaxial

cylinders [26]. The structure of the votices and the velocity

distribution in them and in the remaining part of the liquid

were not investigated. It is seen in Table 2 that the thinner

the fluid layer, the more stable its motion. An empirical

dependence of the critical Reynolds number on the fluid layer

thickness is found by analogy with the Taylor flow (Figure

14b [26]):

" * 490.

c. In the intermediate region 0.12 .. 6 . 0.19, loss of

stability and the formation of vortices are observed; however,

the dependence (2.2) takes place only in a very small interval

of the Reynolds numbers. The data of the unique experiments

described in [26 and 27] are very interesting and productive

for the study of flow in spherical layers, but extremely insuf-

ficient in the range of variation of the parameters w and 6 and

in the technique for visualizing the flow.

Conclusion

The survey of [3 - 20] permits reaching some general

conclusions on the flow in spherical layers.
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I. For small Reynolds numbers, the general nature of the

generated flow is represented in Figure 2 and is described by

the first terms of the series (1.1). The concept itself of

the smallness of Re depends significantly on the values of the

other parameters w and 6. Thus, in thin layers for 6 = 0.1, /20

Re ~ 1000 can be considered small and Formula (1.2) can be used

to describe the flow with a high degree of accuracy.

II. The development of flow with increasing Re depends

significantly on the parameters w and 6. The asymptotic solu-

tion for Re m exists only for the almost rigid body rotation

Ijw-Ik'i under the condition that (joQ-) e',  . In this case,

the motion outside a cylinder of radius R = 1 does not depend

on the sign of w - 1 and reduces to rigid body rotation with the

angular velocity of rotation of the outer sphere. Inside the

cylinder, the velocity of the meridianal flow is parallel to

the axis of rotation and is directed from the slowly toward the

rapidly rotating sphere, the angular velocity of the flow depends

only on the distance from the axis. A "suspended" shear layer

with large velocity gradients is formed close to the cylinder

R = 1. Numerical calculations carried out in [9] for 6 = 1;

w = 1.0526 (Figure 15) indicate an approach toward the obtained

asymptotic behavior with increasing Re. For finite w - 1, the

sign of w - 1 is significant. For sufficiently large velocities

of the rotation of the outer sphere w = -; -1; -0.5, the forma-

tion of the Stewart shear layers and an approach toward the

asymptotic behavior described above are observed with increasing

Re (Figures 8, 9, and 10). With rotation of the outer sphere

only w = 0, the asymptotic behavior for Re - - must be signifi-

cantly different: calculations [10 and 11] indicate that the

meridianal flow is concentrated in the equatorial zone and zones

of stagnation are formed near the poles with increasing Re.
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III. The layer thickness

3 plays the deciding role in the

development of flow instability

method of small perturbations)

with increasing Re [15 - 191.

1 g For 6 > 8* (6* - 0.19 according

+ / to experiment [27]1, flow in

Figure 15. Patterns of spherical layers is always stable

streamlines (105 T) for a = relative to infinitesimal axially

1.0526, Re 2 = 1000, 6 = 1. symmetric perturbations [19.

In thin layers 6 < 6* and 1 < w I

0, the flow can be unstable and a boundary of stability in the

Re, Re 1 2 plane is found [131, analogous to the Taylor boundary /21

in the flow between cylinders. Thin layers are stable relative

to small axially symmetric perturbations for rotation of the

outer sphere only. The experiments [26, 27] carried out for

the case of rotation of the inner sphere only and various 6 give

results in qualitative agreement with the theory.

IV. The theory of flow stability [191 relative to arbi-

trary finite perturbations (the energy method) indicates that

the most disruptive perturbations are nonaxially symmetric

perturbations with an azimuthal wave number m = 1.

Thus, the available results on the study of spherical

Couette flow indicate the necessity of continuing investigations

in the following directions:

a. a theoretical investigation of the asymptotic

behavior of the basic flow in thick layers for Re - - and its

significant dependence on the values of the parameters w and 6;
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b. an investigation of flow stability relative to infini-

tesimal three-dimensional perturbations; there is particular

interest here in obtaining the stability boundary for the layer

thickness 6 = 6* and, in investigating flow stability for large

negative w;

c. performance of experimental investigations over a

wider range of the parameters and with more refined measuring

and visualization techniques.
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